

Sensitivity to new high-mass particles decaying to tt in fully boosted regime at a 100 TeV collider

B.Auerbach, S.Chekanov, J.Love and J.Proudfoot

August 26, 2014

Next steps in the Energy Frontier - Hadron Colliders
25-28 August 2014
Fermilab

100 TeV collider & BSM models with top decays

- 100 TeV collider can study physics beyond 10 TeV
- Many BSM models predict decays of heavy particles to tt
 - top is heaviest known particle!
 - decays to "golden" channels (leptons, photons) can be suppressed
- Heavy means ~10 TeV mass range
- Such masses lead to highly boosted top decays pT(t) > 2-3 TeV

Questions:

- How to measure tt resonances at the 10 TeV mass scale?:
 - separate decay particles cannot be "resolved"
 - "traditional" calorimetry
- What are sensitivity limits for a "generic" tt resonance using boosted techniques?

Separation of top decay products for X (10 TeV)→ tt̄

Phys. Rev. D81 (2010) 114038 S.C. J. Proudfoot

- For ~10 TeV object, typical opening angle between q, \overline{q} and b from t (\overline{t}) is 5 degree
- "Highly boosted" regime: decay products are inside "standard" jets with R=0.5
- Event kinematics → "back-to-back" jets
 - top decays form a narrow "core"
 - large final-state gluon radiation introduces extra smearing (Snowmass13, arXiv:1307.6908)

Current landscape of experimental searches

- 8 TeV: ATLAS & CMS (CERN-PH-EP-2013-032, Phys.Rev.Lett. 111 (2013) 211804)
 - ATLAS:
 - A narrow leptophobic (narrow) Z' is excluded for M<1.7 TeV
 - KK excitation is excluded up to M=2.1 TeV
 - Upper limits: 0.03 pb up to 3 TeV
 - CMS:
 - Z' is excluded up to 2 TeV
 - KK excitation up to 2.5 TeV
 - → Methods: lepton+jets channel:
 - resolved+ some boosted technique (HepTopTagger)
- **14 TeV** for pp with 3000 fb⁻¹ (Snowmass13, K.Agashe et al, arXiv:1309.7847)
 - Masses < 4-5 TeV can be excluded (depends on reconstruction scenario)
- Region with M(X)>5 TeV is new territory for such searches
- Lepton+jets reconstruction will be very difficult due to large overlap of decay products (especially for e+/e-)

see James Pilcher's talk

Goals and analysis plan for 100 TeV collider studies

- Exploring the unexplored. Look at ~10-20 TeV mass range
- Using MC simulations, set model-independent sensitivity limits for observation of a "generic" tt resonance assuming 100 fb⁻¹
- Use Z' and g_{кк} simulations as examples of expected "signal"
 - Z' is narrow ($\Gamma/M \sim 3\%$) while $g_{\kappa\kappa}$ is broad ($\Gamma/M \sim 16\%$)
- Use basic substructure techniques to deal with background
 - irreducible tt background
 - QCD dijet background
- Use a b-tagging with reasonable assumption on efficiency and fake rates
- No detector simulation
 - Our limits are for the best-possible scenarios for $X \to t\bar{t}$ reconstruction
 - Be careful in extracting limits on the production of Z'/g_{KK}
 - Leptonic decays may have better chances for detection!
 - See, for example D.Hayden, R.Brock, C.Willis (2013) arXiv:1308.5874

MC simulation (I)

Signal (LO QCD). PYTHIA8

- $f \bar{f} \rightarrow Z0'$ with M=8,10,12,14,16,18,20 TeV. Code 3001. Pure Z' contribution. $\Gamma/M=3\%$
 - cross section scaled by the k-factor 1.3 (careful here → using 8 TeV CM energy!)
- $q \overline{q} \rightarrow g_{KK}$ with M=8,10,12,14,16,18,20 TeV. Code 5006. Pure g_{KK} contribution. $\Gamma/M=16\%$
 - cross section is at LO

Background processes:

- PYTHIA8 for QCD backgrounds
 - NLOjet++ (NLO) to extract the k-factor (MSTW2008nlo68cl for PDF)
- HERWIG++ x k-factor as alternative (contain W/Z brem. events)
- SM tt process was generated with Madgraph (MSTW2008nlo68cl for PDF)
 - NLO QCD+ HERWIG6
- PYTHIA8 for all SM boson processes (like Z/W+jets)
 - Not too realistic, but the usage of "realistic" ALPGEN should not change conclusions

MC simulation (II)

- Monte Carlo samples from the HepSim Monte Carlo repository:
 - http://atlaswww.hep.anl.gov/hepsim/
 - Select $p \rightarrow \leftarrow p$ then 100 TeV

hep-ph > arXiv:1403.1886

MC event samples:

- qcd_herwigpp_pt2700
- qcd pythia8 pt2700
- ttbar pythia8 pt2700
- pythia10tev_wjet2700
- ttbar_pt2500_mg5
- ttbar_pt2500_mg5_lo
- zprime*_pythia8
- kkgluon_ttbar*_pythia8

Data samples & analysis program are public

Kinematic distributions

- Jets reconstructed using antiKT5 (R=0.5) from FastJet
- pT(jet)>2.7 TeV and |eta|<2.5
- The k-factor for dijets is ~10%, but larger for tt
- The distributions look as expected, with a harder pT spectrum for Z'(10 TeV)

Particle distribution inside jets

dR – distance in φ and η between any final state particle and jet center for leading jets

- tt jets are broader than jets from light-flavor dijets ("QCD")
- Also broader than tt from Z' (harder momentum spectrum)
- For all processes, jet size (R=0.5) is adequate

Dijet invariant mass for 100 fb⁻¹

- Look at 2 leading jets above pT>2.7 TeV.
 - all decay channels. Semileptonic decays are included
- Z' model leads to narrow signal (Γ/M ~ 3%)
- g_{KK} is wider ($\Gamma/M \sim 16\%$) and has larger cross section

Signal(Z')/Bkg ~ 0.001

Not That Obvious:

How to reduce QCD (reducible) and tt (irreducible) background for back-to-back jet events?

Sensitivity limits (no cuts)

Using CL_b method with treatment of statistical uncertainties Lower limits at 95% C.L. are far away from predicted cross sections

- \rightarrow g_{KK} cross sections are at LO
- \rightarrow assume 1.3 correction for Z'
- ightarrow NLO corrections can be large ightarrow

Jun Gao, Chong Sheng Li, Bo Hua Li, Hua Xing Zhu, and C.-P. Yuan, **Phys. Rev. D 82, 014020**

Discriminating variables

- Use jet substructure signatures (SSC-SR-1217 TDR 1992 p 3-26)
- Tremendous recent progress in advancing such approach
- Most basic variables used in this study: (see talk by Brock Tweedie)
 - Jet mass
 - \mathbf{T}_{32} and \mathbf{T}_{21} (N-subjettiness jet characteristics)
 - Jet shapes (eccentricity)
 - $\sqrt{\mathbf{d}_{12}}$ splitting scale
 - Ref effective jet radius (weighted with energy radial distance to jet center)
 - b-tagging assuming ~70 efficiency
 - high-pT muons

J.Thaler, K. Van Tilburg, JHEP 1103:015, 2011

S.C., J.Proudfoot, Phys. Rev. D81 (2010) 114038

J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D65 (2002) 96014

385 ET (GeV) $W' \rightarrow tb \rightarrow jjbb$ candidate 2b-tag channel hadronic top candidate

185

hadronic top candidate

145

105

65

Emiss

7

3

4

90

180

270

360

Jet mass & effective jet radius

Example of possible cuts:

- Look at jet mass of a leading in pT jet. M(jet)>140 GeV rejects:
 - boosted W/Z(+jets)
 - low mass QCD events below the Sudakov mass peak
- Effective jet radius is larger for top-initiated jets

Discriminating variables (lead. jet)

0.4

0.6

8.0

ECC

0.04

0.02

0.2

- τ₃₂ >0.75 reduces QCD and boosted W/Z
- τ₂₁<0.3 reduces W/Z
- τ₂₁>0.8 reduces QCD background
- $\sqrt{d_{12}}$ **50 GeV** reduces QCD,W/Z, some tt

Correlation between variables:

- ~10% for τ_{32} , τ_{21} , mass
- ~30% correlation between d₁₂ mass, ECC

Discriminating variables (lead. jet) PYTHIA8 → **HERWIG++**

b-tagging and muon pT

- Match antiKT5 jet with a quark using dR(eta-phi)<0.1
- Assume efficiencies and fake rates:
 - 70% efficiency for b-tagging
 - 10 % fake rate for c-quarks
 - 1% fake rate for light quarks
- b-tagging assumes $p_{T}^{b} / p_{T} > 0.2$

Muon p_T

- Can we use muons to reject background?
- We can, but too low statistics for 100 fb⁻¹ assuming $p_{T} > 1$ TeV

What is rejection vs efficiency anyway for all selection variables?

Rejection vs efficiency

- Jet-mass rejection is not attractive option compared to N-subjetiness
 - For the same 50% efficiency τ_{32} has a factor of 3x better rejection than jet mass
- N-subjetiness performs better than a cut on muon

Jet mass after selection cuts

- Consider 2-jet events with pT>2.8 TeV
- "Tag" any jet with the cuts:
 - b-tagging
 - τ_{32} <0.7 and 0.3< τ_{21} <0.8
 - $\sqrt{d_{12}} > 50 \text{ GeV}$
- Observe a bump in jet mass due to top

100 fb⁻¹ should be enough to observe super-boosted single top quarks in fully inclusive channel t+X! (can be tt̄, single top and exotic decays!)

See the 14 TeV case: B. Auerbach, S. C., N. Kidonakis arxiv.org:1301.5810 ANL-HEP-13-05. Snowmass

White histogram: all processes (dijet, top, W/Z)

Dijet mass after selection (Z' \rightarrow tt)

- Consider 2-jet events with pT>2.8 TeV
- Apply selection (for any jet):
 - M>140 GeV
 - b-tagging
 - τ_{32} <0.7 and 0.3< τ_{21} <0.8
 - $\sqrt{d_{12}} > 50 \text{ GeV}$

double b-tag case

before cuts

Sig(Z')/Bkg ~ 0.001

after cuts: single b-tag +

substructure variables

Sig(Z')/Bkg ~0.03

Not bad!

Dijet mass after selection $(g_{kk} \rightarrow t\bar{t})$

double b-tag case

- Consider 2-jet events with pT>2.8 TeV
- Apply selection (for any jet):
 - M>140 GeV
 - b-tagging
 - τ_{32} <0.7 and 0.3< τ_{21} <0.8
 - $\sqrt{d_{12}} > 50 \text{ GeV}$

before cuts

Sig(Z')/Bkg ~ 0.002

single b-tag +

substructure variables

Sig(Z')/Bkg ~0.07

Not bad!

21

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov et. al (ANL)

Sensitivity limits for M=0.5-20 TeV

ATLAS, Phys.Rev. D88 (2013) 12004 K.Agashe Snowmass13, arXiv:1309.7847

This study

- Z' 95% CL: σxBr ~ 100 fb (M=8 TeV) and 20 fb (M=20 TeV) for 100 fb⁻¹
 - factor ~10 larger compared to predictions. Difficult to observe (low statistics)
 - requires ~500 fb⁻¹ for M=10 TeV and ~1000 fb⁻¹ for M=20 TeV
- g_{KK} 95% CL: $\sigma xBr \sim 600 \text{ fb (M=8-20 TeV)}$ for 100 fb⁻¹
 - can be observed assuming LO QCD and M(g_{kk}) <10 TeV
 - higher masses require x5 larger luminosity

Summary

- Sensitivity limits on $X \rightarrow t\bar{t}$ calculated in the mass range 8-20 TeV
 - Fully boosted regime (top decays products are not resolved, dijet topology)
 - Technique: b-tagging, substructure variables & jet shapes.
- With the current approach, 100 fb⁻¹ is not sufficient to observe Z' / g_{KK} (LO QCD) with masses above 10 TeV. Observation of g_{KK} near 10 TeV is possible
 - Low statistics is the main limitation. Can we further increase S/B ratios?
- Rough projections based on statistical extrapolation of this analysis
 - 100 TeV pp data can be sensitive to:
 - **Z**': M~15 TeV (5 x100 fb⁻¹) or M~20 TeV (10x100 fb⁻¹)
 - \mathbf{g}_{KK} : M>15 TeV masses require 5x100 fb⁻¹
- Requirements for a future experiment:
 - efficient b-tagging (largest bkg. separation)
 - high-granular calorimeter to apply substructure techniques for R~0.5 jets
 - >500-1000 fb⁻¹
- Paper is in preparation